A perturbed differential resultant based implicitization algorithm for linear DPPEs
نویسنده
چکیده
Let K be an ordinary differential field with derivation ∂. Let P be a system of n linear differential polynomial parametric equations in n− 1 differential parameters with implicit ideal ID. Given a nonzero linear differential polynomial A in ID we give necessary and sufficient conditions on A for P to be n − 1 dimensional. We prove the existence of a linear perturbation Pφ of P so that the linear complete differential resultant ∂CResφ associated to Pφ is nonzero. A nonzero linear differential polynomial in ID is obtained from the lowest degree term of ∂CResφ and used to provide an implicitization algorithm for P.
منابع مشابه
Linear complete differential resultants and the implicitization of linear DPPEs
The linear complete differential resultant of a finite set of linear ordinary differential polynomials is defined. We study the computation by linear complete differential resultants of the implicit equation of a system of n linear differential polynomial parametric equations in n− 1 differential parameters. We give necessary conditions to ensure properness of the system of differential polynom...
متن کاملImplicitization using univariate resultants
Among several implicitization methods, the method based on resultant computation is a simple and direct one, but it often brings extraneous factors which are difficult to remove. This paper studies a class of rational space curves and rational surfaces by implicitization with univariate resultant computations. This method is more efficient than the other algorithms in finding implicit equations...
متن کاملSparse implicitization by interpolation: Characterizing non-exactness and an application to computing discriminants
We revisit implicitization by interpolation in order to examine its properties in the context of sparse elimination theory. Based on the computation of a superset of the implicit support, implicitization is reduced to computing the nullspace of a numeric matrix. The approach is applicable to polynomial and rational parameterizations of curves and (hyper)surfaces of any dimension, including the ...
متن کاملNumerical stability of surface implicitization
In geometric modelling surfaces can be given essentially in two ways: implicit and parametric form. The automatic transition between the implicit and the parametric representations of surfaces is of fundamental importance. In the literature there are several symbolic/numeric implicitization techniques based on resultants [1], Gröbner–basis [2], moving surfaces [3], linear algebra [4], but the n...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 46 شماره
صفحات -
تاریخ انتشار 2011